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ABSTRACT 

We analysts the interactions of massless fermions in arbitrary 

representations of the gauge group, with general spherically symmetric 

monopoles of arbitrary strength. We obtain the conditions for 

finiteness of the solutions to the Dirac equation at the origin, evolve 

it through arbitrary radial functions and obtain the boundary conditions 

at the monopole core radius, thus improving upon the step function 

approximation previously used. We show that our results differ from the 

results using the step function approximation only when the boundary 

conditions are not diagonalisable on the physical basis, and hence 

processes involving such cases may be used to probe the structure of the 

monopole core. 

e Operated by Unlversitlas Research Association Inc. under contract with the United States Department of Energy 



-2- FERMILAB-Pub-84/75-T 

I. INTRODUCTION 

Ever since the theoretical possibility of monopole catalysis of 

baryon decay was discovered,’ l2 there has been a concerted effort to 

understand the ramifications of the monopole-fermion system.3 The 

original work on the lowest dimensional representation of massless 

fermiOns interacting with the lowest strength monopole has been extended 

to higher dimensional representations of massless fermions4’5 and to 

massive fermions .6 Higher strength monopoles have also been discussed.7 

The next extension is to study fermions interacting with arbitrary 

spherically symmetric monopoles. 8 Schellekens’ has made a systematic 

analysis of massless fermions in arbitrary representations of the gauge 

group interacting with spherically symmetric monopoles of arbitrary 

strength. 

In this paper, we shall extend the work of Schellekens by relaxing 

the step function approximation that he used to obtain the boundary 

conditions. Since the boundary conditions depend crucially on the 

monopole core dynamics, it is not a priori obvious, that the step 

function approximation is justified, even in the limit where the core 

radius is vanishingly small. We find that by including an arbitrary 

radial function inside the monopole core, we introduce an arbitrariness 

in the boundary conditions, but they still remain unitary. Unitary 

boundary conditions are needed for the hermiticity of the truncated 

Hamiltonian,--i.e. the Hamiltonian obtained from the full Dirac 

Hamiltonian by replacing the monopole core dynamics by the boundary 

conditions. Since there exists a well-defined prescription for 

obtaining the boundary conditions at r = r. (where r. is the core 
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radius) from the singularity structure at P = 0, we follow that 

prescription to show that the boundary conditions do imply a hermitean 

truncated Hamiltonian and consequently the boundary conditions are 

unitary. 

Schellekens has shown that in the step function approximation, we 

may get the boundary conditions in terms of just the physically relevant 

fields--i.e. the fields that interact non-trivially with the monopole 

core. We show that even with arbitrary radial functions inside the 

core, the decoupling of the irrelevant fields occurs, and we get the 

right number of boundary conditions. I” fact, in most physical cases, 

the boundary conditions in terms of the physical fields are one 

dimensional, so that the arbitrariness of the unitary matrix reduces to 

an arbitrary phase, and our results in terms of physical cross-sections 

are identical to those obtained in the step function approximation. 

Only in the somewhat unusual case, where the boundary conditions are not 

reducible to the one dimensional form, OUP results are observably 

different--i.e. physical cross-sections are numerically different--from 

the step function approximation. Such cases may be used to probe the 

monopole core. 

The paper is organized in the following way. In Section II, we 

solve the Dirac equation at the origin in the presence of an arbitrary 

spherically symmetric monopole, closely following Schelleken’s 

formalism. The purpose of this section is just to fix the notation and 

make the paper self-contained. In Section III, we evolve the conditions 

needed for finiteness of the solutions at the origin to r = ro, and 

prove that they are unitary. In Section IV, we describe the decoupling 

of the irrelevant fields and obtain the effective boundary conditons. 
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Finally in Section V, we describe how the arbitrary unitary matrices are 

reduced to unobservable phases in the Green’s functions, and offer our 

conclusions. 

II. BOUNDARY CONDITIONS ON THE FERMION FIELDS AT THE ORIGIN 

In this section, we shall briefly review the formalism of 

spherically symmetric monopoles in order to fix our notation. Then we 

shall obtain the general form of the Dirac equation for fermions in all 

partial waves, in any representation of the gauge group, both inside and 

outside the monopole core. Then, we solve the equations of motion at 

the origin and obtain the condition on the fermion fields for finiteness 

of the solution. 

A) Spherically Symmetric Monopoles 

Let us consider a group G broken down to a subgroup H, by the 

vacuum expectation value of a Higgs field e. The vector potential of the 

point monopole, in the string gauge, is given by 

i = Q iD (2.1) 

where the Dirac monopole field 1, is 
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AD = 
(1 - cos9) ; 
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(2.2) 

The matrix Q is a constant generator of H. 

Now consider an SlJ(2) subgroup of G with generators ?. Goldhaber 

and Wilkinson8 proved that a monopole field can be gauge transformed to 

a gauge where 2.1 becomes spherically symmetric under t + 7 iff 

Q = I3 - T3 (2.3) 

where 7 are the generators of an SU(2) subgroup of H and furthermore 

IQ,-;] = 0 (2.4) 

In the gauge-transformed basis, 

“n = (T(P) - T, XL 
-- 

r (2.5) 

where f(r) is defined from ? by a suitable gauge transformation. 

They also showed that for a finite energy non-singular solution, 

the most general spherically symmetric ansatz for d is 

T = @( (2.6) __ 

^ ^ 
where ?(r,r) is a vector under z + ‘? and Ft(r,r) = l(r) for r > ro. 
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Since this formalism has been described in detail in the original 

paper8 and also by Schellekens, 9 we shall not go into further details 

here. 

8) Form of the Dirac Equation 

We start with the two-dimensional form of the Dirac operator, for 

the left-handed Weyl fields and we work in the AD = 0 gauge 

= i& -iho r t i i-j. (>r + ;I (2.7) 

where 

 ̂ 1  ̂

D = 
0 r‘oi (aij - rirj)Jj - ioi siaj (P,(r,?) - Ta) rj - ,.; (2.8) 

with 

~a(r,r) = Tat I" = 0 

^ 
= Pa(r,r), 0 < I‘ < r0 

1 

= I,('), r > r D 

D n can be expanded in terms of the vector 

^ 
M’ = 2 + s’ + T’ - C(r,r) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 
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^ ^ 
D R 

=-;.F (;;.it - ;.j. ;.r, (2.13) 

The fermion fields can be expanded in eigen-states of J2, 
J3' s2, 

T2, (I(;.))2, F. f(p) and G-T. We replace G.?(c) by i = p.?(p) - L-3 and 

label our states in this basis for given ;t, 1 and !$ = l/2 by \J2, J3, 

L.3, 2, 4 >. 
^ L 

In the r.;f, r-2 space, we order the fields as follows 

I*, -l/2' *D2,1/2' 
(2.14) 

1, 

where +1/Z are the F-2 eigenvalues and 

D1 
= D2 = +t, t-1.. . -t, for j 2 t + l/2 (2.15) 

D, = +j + l/2, (j - 1) + l/2 . . . -j + l/2 

D2 
= -j - l/Z, (-j + 1) - l/Z . . . +j - l/2, 

for j ( t - l/2 (2.16) 

are the r;i! eigen-values. 
^ 

In this space, the operator z.G - :.F ?l.r can 

be written as 

++ 
o.M - (2.17) 

where A and A+ are matrices in the space of D 
1 and D2 respectively. 

Further,the phases of the fields can always be chosen so that at the 

origin, 
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A = A0 = (&~x-:---” 7 Cr.?) 2+ l/4 I- 2) ;+ (2.18) 

and outside the monopole core 

__- ~~.~.-~, 

A = A+ = (m&l2 + l/4 ll - ;-, ii+ (2.19) 

Here ?’ ,?’ and 2’ are the raising and lowering operators for T-T ,F.‘f 

and p-s respectively with standard angular momentum phase conventions 

(i.e.,matrix elements of ?* ,-* I- and 3’ are real and positive.) Inside 

the monopole core, the operator structure depends on the unknown radial 
a ^ 

function P(r,r) and hence A- is a function of r. 

C) Solution of the Dirac Equation at the Origin 

The Dirac equation is given by equation 2.7 with the appropriate 

form of D R. We make explicit a l/r dependence of the solution, so that 

Jr + l/r can be replaced byar and work in the approximation where HX = 

EX = 0, so that equation 2.7 reduces to 

(2.20) 

Following Ref. 9, we decompose A0 into a product of hermitean and 

unitary matrices 

AO = HOUO (2.21) 

Ho may be diagonalised by a unitary transformation matrix So, and 

furthermore, the decomposition 2.21 can always be chosen so that the 
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diagonal matrix Do has positive eigen-values. 

Hence, we have 

3r (I,;, ;I;;;;;) =: [~o~oA~~~soAou"': ) [:;"- ;1;:;1;) 

=; ( 1, :y:;“o ;:;:r::‘) (2.22) 

leading to 

Jr 
i 

sO*Dl,-,/2 

'O*D 1,-1/2 

(2.23) 

so that for finiteness of the solution at the origin, we have to set 

*D, ,-1/2 ="O"D l/2 
(2.24) 

2' 

where ,because of our phase conventions, U, is an orthogonal matrix. We 

may write this result in terms of a projection operator P acting on the 

column vector x = (*, ,,-,, 29 *D2,,,2) as 

1 
P (r = 0) -"0 = ( ) 0 0 

(2.25) 



-1 o- FERMILAB-Pub-84/75-T 

III. EVOLUTION OF THE BOUNDARY CONDITIONS 

In this section, we shall evolve the conditions on the fermion 

fields for finiteness at the origin, through arbitrary radial functions 

to r = ro. Since we cannot solve the equations of motion inside the 

core, we evolve the projection operator and show that it satisfies the 

condition for hermiticity of the truncated Hamiltonian, for any radial 

function inside the core. 

Let us first find the necessary condition for the truncated 

Hamiltonian to be hermitean. Since iD, =(n,,-i;)is obviously hermitean, 

the condition is 

ld3x $: C-i ;.r Jr) $I, = Id3x c-i ?*Far j,,)+$, (3.1) 

By choosing the fermions in the (qD 
,,-l/2 

, $D2,,,2) basis, we may write 

+- 0 1 
q-r = ( ) < 

-1 0 rl (3.2) 

To get the condition in a more convenient form, we integrate the L.H.S. 

of equation 3.1 by parts to get 

ld2x JI:(-ir,) $2 - jd3x Ci& liif) r,$, 

boundary 

(3.3) 

which is equal to the R.H.S. if 
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t *, r, *2 = 0 at P = r. (3.4) 

Since, at the boundary, $I, = (1 - P) $, and I), = (1 - P) Q2, the 

condition can be written in terms of the projection operators as 

(1 - P)’ r, (1 - P) = 0 at r = r. (3.5) 

P(r = 0) obviously satisfies the hermiticity condition and we wish to 

show that P evolved to r = r o also does. 

The equations of motion inside the core are 

-2 t-X = M (r)x (3.6) 

where 

M(r) = G 

Let us transform to the basis 

@ = (sD~D,,-,,.i-souoit-s~,,,~ ? ‘so b-o,,-v~ -+ 5; u* $o,,@.J (3.Y) 

where the projection operator at the origin is 

i 

I 0 
P@(r = 0) = 

00 
(3.8) 

M(r) is transformed as well and 



-12- FERMILAB-Pub-84/75-T 

M@(r) & 
U A+S+ - SOAJ;S; 00-o -SO'JOLSO + + + SOA& 

U A+S+ - 00-o S A U+S+ o-00 S U A+S+ + 00-o S A UtS+ o-00 

(3.9) 

In this basis, the solution at P = r. is 

= OE @ (I. = E) (3.10) 

where P denotes path ordering and the regulator E is needed to take care 

of the singularity of M@(r) at the origin. 

Now, in the limit E + 0, $(ro) is finite provided that the solution 

at the origin satisfies the appropriate finiteness condition--i.e. if 

P@(r = 0) @ (0) = 0 (3.11) 

=> 
Lim 
E'O P# (r = E) @ (I. = E) = 0 (3.12) 

Hence, ii$ 0 OE (1 - PO (r = E) ) is finite--i.e. if we write 

0 = Ol 4 
E i ) O3 04 

(3.13) 

02 and O,, at-e finite when E + 0. 
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Let us now construct the projection operator at r = ro. We write @ 

= ($,, 4,) and use 

a (r = ro) = 1,"? o OE (1 - P*(r = E) ) Q (r = E) (3.14) 

( 3-h a) 

to obtain 

“, (ro) = 020;102(ro) 

which gives 

-1 

P(r = ro)z P,('. = ro) = 
1 -0204 

i i 
0 0 

(3.15) 

(3.16) 

Since P,(r = ro) depends only on O2 and O,,, it is explicitly finite in 

the E + 0 limit. The hermiticity of the Hamiltonian is not easy to see 

with this form of the projection operator. Hence, we construct another 

projection operator using 

l,i"- 0 P(r = E) a(r = E) = 0 (3.17) 
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-1 
Z> ;iF o 0 P(r = E) 0 E 

E OE 0 (r = E) = 0 (3.18) 

Now ,li$ o OE @(r = E) is finite, but 

P(r = ro) 5 P2(r = ro) = OE P(r = E) 0-l 
E (3.19) 

need not be finite in the E l 0 limit. In fact, we can explicitly show 

that 

P2(r = ro) = A Pl(r = ro) (3.20) 

where 

A= (3.21) 

SO that P2(r = ro) and P,(r = ro) project onto the same space, but P2(r 

= ro) depends on 0, and 0 
3 

as well, and is not explicitly finite in the 

E + 0 limit. 

We shall use P2(r = ro) to prove the hermiticity of the 

Hamiltonian. We look at 

(1 - P,)+r,(l - P,) = CO(1 - P(r = E))O-'l+rlCO(l - P(r = E))O-'l 

(3.22) 

= (o-')+(l - P(r = o))+o+r, O(1 - P(r = o))o-' 

(3.23) 
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=o (3.24) 

since O+r,O = *,, which in turn comes from MT, = -TIM. Thus, we conclude 

that P(r = ro) describes unitary boundary conditions, so that 

*D,, -1 /z 
=u* 

D2,1/Z 
(3.25) 

where U,which is an orthogonal matrix in our conventions, depends on the 

radial functions inside the monopole core, and consequently contains 

information about the core. 

IV. EFFECTIVE BOUNDARY CONDITIONS 

In the previous section, we obtained the boundary conditions in 

terms of all the fields that exist in a given partial wave. But 

kinematically, only some of the fields can enter the monopole core and 

have a non-zero amplitude outside. We would like to get the boundary 

conditions in terms of these physically relevant fields. To find out 

which are the physically relevant fields, we have to look at the 

equations of motion outside the core. From Section II, we know that, 

for E = 0, 
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Jr (;‘:;r:‘i) = (::l.)(:L.;;;;;) 
where 

A + = ( J(J + 1) - (;.+,’ + l/4’ n - T-j;+ (4.2) 

I 
= ( M(M + 1) - 6’ + l/4 II ,s+ (4.3) 

A+ may be diagonalised just as A0 was, and in the new basis, M2 is 
^ 

diagonal instead of r*+ --i.e. we have 

(4.11) 

where S+ and U, are defined analogously to So and Uo defined in 

Section II, and the equations of motion in this basis are 

(4.5) 

This equation has to be interpreted carefully. Firstly, ;i is diagonal 

in this basis as well, and it is clear that zeroes appear in D+ whenever 

q =c(m+1/2). Furthermore ,two states that are connected by non-zero 

eigenvalues of 0, have the same $ and Mz eigenvalues. Let us order the 

fields in equation 4.5 so that the fields with (m+l/2)’ = q2 are in the 

first 2p places. The remaining fields are arranged so that the entries 

’ hl(m+l) t i/d .- Tz 
I 

in D+ connect the pair 

L m,t,-tL to (Crn,$’ yz - i.e., we can write equation 4.5 as 
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( +f-l’ i 7qr,-1/l_ )I 

/ : 
c 4-d J$l) I,,!; 
( brl’, q,, -I/a)j 

\ ( %I~‘, q., l/a j ) / 

4.6 

where i = 1 I e.-- - ,p ,j = p+l, _-_- ,n and n is the number of fields 

in the given partial wave. &j is a diagonal positive definite matrix. 

The + fields are explicitly labelled by their $ eigenvalues as well, 
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just for clarity.The solutions to these equations are 

Cj 

oj 

z ( 

.- 
= ( 

= 
-I 

~il~,q,, i/.2 L > 

4-m 3, -l/a * 

= a; 

= b; 

G- rlL>‘j,~Y~ J >- 

4. 7 

4.8 

ZZ Cj71k 
> 

k=-0 4.4 

4 m: ‘t , -1/a - b-ma, 4-J ‘/3- J J 

k 
= , kso 4-10 

where a. i, bi, cj and dj are constants. It is clear that the amplitude 

for the fields Cj are proportional to rO at the boundary, and hence in 

the limit r 0 f 0, they cannot enter the core. On the other hand, the 

fields Dj have a large amplitude at the core, but in the limit r-0 + 0, 

they have a vanishingly small amplitude outside. Hence, the only 

physically relevant fields are Ai and B. 1. Since the equations of motion 

outside the core do not couple them to Cj and Dj, if we can write the 

boundary conditions in terms of the Ai and Bi fields, we may drop the C. .J 

and Dj fields from the problem altogether. 
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At the end of Section III, we obtained unitary boundary conditions 

in the >.? diagonal basis. Hence, we have 

*,:,-l/Z 
e at = sy+s+ *,;,,,,s I- = r. (4.11) 

= v JIM;,,,*’ I- = PO (4.12) 

where S; and U: are defined from S, and U, by a suitable reshuffling 

Of the rows so that the fields are now ordered as in equation 4.6 and V 

is a unitary matrix.In terms of the A,B,C and D fields,4.12 may be 

written as 

(:rO+D) = (:;:;)(Cr,-:) 
(4.13) 

Ignoring terms of o(rO), we get the following condition in terms of the 

physical fields 

A = IV, - v2 (1 + v ) 
4 -' V3) 8 (4.14) 

which can be explicitly shown to be unitary. Hence, we may write 

Ji+, ,2 = “phys *M:,, ,2’ i = ’ * ’ ’ ’ (4.15) 

in terms of only the physically relevant fields. Our problem has been 

effectively reduced to physical fields interacting with the core via the 

unitary boundary condition 4.15. 
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We have yet a couple of technical points to mention. One is that 

we have been using J2, J3 eigen-states to describe the monopole-fermion 

interactions. This is a convenient basis inside the monopole core, 

because 7 is strictly conserved. But, in the spherically symmetric 

gauge that we are employing here, the physical angular momentum of the 
^ 

particles is given by 6, = 5 - T(r). Hence, the physical particles are 

eigenstates of IM:, M+3, Ix(r), F-S, a > (2 4/&, ,$,;.‘Q ) which are 

related to the /J2, J3, M2, r.2, - Q > eigenstates that we have used in 

4.15, by the appropriate Clebsch-Gordan co-efficients--i.e. by a 

unitary transformation. Since both bases are diagonal in MT and Q, the 

physically relevant states in one basis are transformed to physically 

relevant states in the other basis. With our choice of basis ,the 

Clebsch-Gordon coefficients are real, so that qPhJ5, 1~~ , -I/ma = a 

linear combination of 1 J’, J3, G, m’, ,?.g=-V=)states and 

$phy 3 j PI, ~ ~+ I/A = the same linear combination Of 

‘2. 
17: J3, 4, M , $. $ _ I/a> states. Furthermore,the relative phases 

between the different 3 eigenstates is +l (since? has standard angular 

momentum phases. Hence, there is no ambiguity in writing the boundary 

conditions in the physical basis as 

*phys,-l/2 = “phys ‘phys, l/2 (4.16) 

where L’phys is an orthogonal matrix. It should be noted however, 

that it was crucial to this transformation that the Clebsch-Gordon 

coefficients could be chosen to be real and positive,and that the 

relative phases between the different J eigenstates could be +l 

simultaneously. 
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The second point to note is that if U’ phys Is not diagonal, an 

incoming physical particle scatters to a linear combination of outgoing 

physical particles. But, in most cases, U’ 
phys 

turns out to be 1 

dimensional and automatically diagonal. 

v. DISCUSSIONS AND CONCLUSIONS 

In this section, we discuss how our results differ from the results 

using the step function approximation. 

When the boundary conditions, in terms of the physically relevant 

fields are one-dimensional, we have 

*in = .k Jlout (5.1) 

in the step function approximation. After evolution through the 

radial function, the phase is still either +l or -1, but any Green’s 

function involving these fermions is only multiplied by 21, which is 

unobservable when we square the amplitude to get the cross-section. 

When the boundary conditions are not one-dimensional, we do not 

expect U’ 
phys 

to be diagonal in general, unless it is due to some 

symmetry. Here, we have 

*in = Uij (0) *iut (5.2) 

in the step-function approximation, and 
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*:, = uij (ro) *iut (5.3) 

after evolution through arbitrary radial functions. Here, a Green’s 

function involving *in and jliut is multiplied by Uij(0) in one case and 

uij(ro) in the other case, which may be numerically different. Hence, 

the cross-sections for $I:, scattering to *Jout are numerically different 

from the step-function approximation. Such processes, in principle, may 

be used to probe inside the monopole core, since Uij(rO) is sensitive to 

the radial functions inside the core. HOWeVer, we have not found such a 

case among the simplest examples that we have looked at. 

Hence, in conclusion, we have analysed fermions in arbitrary 

representations of the ww group interacting with arbitrary 

spherically symmetric monopoles, after including the radial functions 

inside the core. We find that in most simple cases, ow results are 

exactly identical to the results using the step function approximation. 

But in certain cases, our results do differ and these cases can be used 

to probe the monopole core. 
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